
WebAssembly: Basics
Lennard Golsch

Technical University of Braunschweig
Brunswick, Germany

l.golsch@tu-braunschweig.de

Abstract
With the availability of the internet, it is hard to imagine
today’s world without web applications. By historical acci-
dent, JavaScript is the only widely supported programming
language on the Web. For a long time no other standard
could be established for the calculations on the client side
of web applications. The evolution of hardware enables end
devices to handle more complex applications. Because of its
old-fashioned architecture, JavaScript is an obstacle to the
evolution of web applications. For this reason, developers
from the relevant browser manufacturers have joined to-
gether to develop a solution. As a result, WebAssembly has
been available since late 2017. The goal of the development
is a supplement to JavaScript, which should improve loading
times as well as execution. This paper gives an overview of
WebAssembly, discusses the approach as well as with respect
to its practical predecessor like Google Native Client.

Keywords WebAssembly, web, bytecode, stack machine

1 Introduction
Exactly 50 years ago Tim Berners-Lee established the foun-
dation for today’s web. First the web was developed for the
transmission and presentation of simple documents over the
internet in web browsers. However, advanced hardware and
software development has had an impact on the web. The
simple documents quickly became more complex web appli-
cations. A web application is an application program based
on the client-server model. Instead of being installed like a
classic desktop application, a web application is accessible
via a browser, for example. Normally, parts are outsourced
to the client where the calculations can be performed and
executed later to save server-side resources.
Through historical accident JavaScript is the only na-

tively supported programming language on the web. Today
JavaScript has established itself for client-side calculations
and is the main component of web applications on the client
side. "The vast majority of websites, including large social
networks, such as Facebook and Twitter, makes heavy use of
JavaScript for enhancing the appearance and functionality of
their services" [24]. Also for this reason, the web is no longer
conceivable without web applications. JavaScript is popular
because it is available on all common platforms and at the
same time it offers relatively good performance. Statistically,
Javascript has been the most popular programming language
on Github over the last five years [7].

However, JavaScript is limited because of its functionality,
which affects the performance of the applications. Complex
applications like 3D-applications such as games, are not re-
ally feasible. In terms of the relevance and potential of a web
application, JavaScript is such an obstacle to the development
of the web. In summary, no high-performance standard could
establish itself more than JavaScript. For this reason Haas et
al. [16] have developedWebAssembly (WebAssembly). The
motivation behindWebAssembly is generally a new standard
for the web, which should offer a performant execution. "We-
bAssembly is designed as a portable target for compilation of
high-level languages like C/C++/Rust, enabling deployment
on the web for client and server applications" [15].

This paper deals with WebAssembly and is mainly based
on the initial paper [16]. In the following chapters back-
ground information is given. This is followed by basic infor-
mation about WebAssembly in terms of motivation, features,
implementation and performance. Afterwards related work
is presented and a conclusion to WebAssembly follows.

2 Background
The following chapter describes background information
about JavaScript and additionally discusses approaches that
can be considered as predecessors of WebAssembly.

JavaScript is an interpreted programming language that is
object-oriented for client-side programming. Initially it was
developed for dynamic HTML in web browsers. The first ver-
sion was developed for the web by Netscape, special Brendan
Eich, and released in 1995. Fundamentally, JavaScript is a
scripting language that is interpreted. JavaScript is available
on all relevant platforms. Code is transmitted in plain text
and is interpreted by an engine. But performance today is
improved by just-in-time compilation (JIT). The engine runs
isolated from the operating system context in a sandbox and
communicates with the web browser. There is an approach
with Node.js that enables JavaScript on the server side.

With Java or Adobes Flash there exist similar approaches
to JavaScript. However, an additional plugin usually has to
be installed for execution. Flash enables the execution of
ActionScript. ActionScript is interpreted and executed by the
Flash plugin very similar to JavaScript. Especially in Flash
there have been security vulnerabilities, so that browser
manufacturers advise against the use. Flash is used today by
3.2 % of all websites [8] and Adobe has announced that it will
stop support and distribution at the end of 2020 [18]. Java
applets allow the execution of Java code in web browsers.

Lennard Golsch

The Java code is executed in an isolated Java VM that is
either integrated in the browser or can be installed with a
plugin. Mainly because of security vulnerabilities the leading
browsers mostly do not support applets any longer.
Many approaches are based on running native code to

improve application performance. Already in 1996 Mircosoft
published an approach with ActiveX to support binaries in
the browser. ActiveX requires the Component Object Model
(COM) for the application. COM is a Microsoft approach and
can generally only be found in Internet Explorer. ActiveX
objects already include compiled and therefore platform-
dependent machine code. [21] The architecture of ActiveX
is classified as security critical, since the execution is not
isolated from the operating system as in a sandbox.
Google has also published an approach with the Google

Native Client in 2011. NaCl is a sandboxing technology that
allows native code to be executed in a sandbox. With a special
SDK, C/C++ source code can be compiled into a so-called
nexe module. These modules can be executed independently
of the operating system in the in-house chromium environ-
ment. However, NaCl supports only a handful of hardware
architectures and is therefore not platform independent. [9]
Later, Google introduced Portable Native Client (PNaCl).

PNaCl is an extension of NaCl that allows native code to be
executed platform-independently. Thereby PNaCl supports
the execution of native code on all relevant platforms like
Intel x86, ARM or MIPS. Native code can be compiled via
a compiler into so-called pexe modules which is bytecode.
These pexe modules are translated into the platform architec-
ture on the client side where they are executed. Nevertheless,
NaCl and PNaCl are only supported by Google Chrome and
Chromium and therefore no general approach. [9, 25]

With asm.js, Mozilla has provided in 2013 an intermediate
language for porting applications written in C, for exam-
ple. This should provide a better performance than with
JavaScript. In principle, the code is systematically gener-
ated from the native code using a transcompiler such as
Emscripten. A transcompiler is a compiler that specializes
in converting the source code of a program into another
language. Emscripten is generally able to compile LLVM
[20] assembler code to standard JavaScript-Code. It can be
used to convert simple C/C++ which is based on Clang and
LLVM to JavaScript code. Fundamental, asm.js is based on
a subset of JavaScript, but still achieves better performance
than ordinary JavaScript code by adding conventions. Due
to the use of JavaScript, asm.js is mostly supported by the
common browser manufacturers. [17]

3 WebAssembly
WebAssembly (Wasm) is the result of a merger of the lead-
ing browser manufacturers Apple, Google, Microsoft and
Mozilla, which joined together in 2015. In principle We-
bAssembly combines the advantages of the approaches and

results of ActiveX, PNaCl and asm.js and was developed
mainly by the minds of these techniques. Due to the know-
how and the clear goal, the WebAssembly was published rel-
atively quickly. The first WebAssembly version was released
in November 2017. To ensure that WebAssembly follows
its principles, the developers have set themselves two main
goals, semantics and representation [16]:

Safe, fast, and portable semantics WebAssembly should
be fast and secure at the same time. The efficiency is to be
increased by a language that is oriented to a low-level lan-
guage. Safety should be given by the execution in a sandbox.
Simultaneously, WebAssembly should be operable on every
system due to its language, hardware and platform indepen-
dence. Furthermore, WebAssembly should be deterministic
and easy to understand via simple interoperability with the
web platform.

Safe and efficient representation WebAssembly should
be based on a compact representation that is easy to code.
At the same time, the representation should be easy to vali-
date and compile. In terms of JavaScript, bytecode is much
more compact and efficient. The compactness is intended to
minimize loading times caused by the transmission. In order
to do justice to the Web, the representation should support
streaming and parallelizability. In addition, WebAssembly
code should be easy to produce.

The following chapter deals with the achievement of the
goals of the developers, mainly with design and implementa-
tion. Measurement results are also discussed. In addition, the
development and integration of WebAssembly is covered.

3.1 Module
A WebAssembly binary is defined by a so-called module. It
is the distributable, loadable and executable code unit in
WebAssembly. WebAssembly works according to the stack
machine principle. Instructions which are executed and the
result of each operation is pushed to the stack and the next
instruction may push or pop to the stack. A total of 4 data
types and 67 instructions are available. WebAssembly mod-
ules are not independently executable, they need a so-called
embedder, which instantiates the modules and also manages
the import and export. More will be discussed in section
3.4.2.

3.1.1 Sections
Subsequently, 11 definitions and sections can be described
in one module, which are necessary for its execution. Each
module starts with the so-called magic number, for example
0x6d736100 (i.e., ’ \0asm’) and the so-called version 0x1. It is
possible to declare a main function with start in a module,
which is called after initialization, see Figure 3. [15, 16] The
most important sections include the following:

WebAssembly: Basics

Data Section This section is similar to the .data section of
native executables. Among other things, static and global
variables are stored here. A global variable consists of a type,
initializer and a mutability flag. [15]

Function and Code Section A function is divided into a
function section and a code section. In the function section
the signature of a function is described. The code section
contains the body or the code of this function. [15]

Import and Export These sections define specific imports
and exports of a WebAssembly module. WebAssembly sup-
ports imports and exports from other modules or the host
environment. For example, functions or global variables can
be imported and exported from other modules. Concerning
JavaScript, for example, it is possible that a WebAssembly
module gets access to the object console.log by importing
it from the JavaScript environment. Imports can be called
using the call operator. Once a module instance imports a
definition, it is shared with the exporting instance. [15, 16]

Memory Section The description of the linear memory is
assigned to this section, see section 3.2. The section defines
the initial size of the memory, which can be dynamically
expanded at runtime. [15]

3.1.2 Representation
The inventors provide two formats for coding a module.
There is a binary and a textual representation. A module in
binary representation encodes the typical assembly instruc-
tions and is declared with the suffix .wasm. The inventors
attached great importance to a text representation. For this
reason, there is a textual representation that encodes the
instruction in a module textually. This has the intention that
code can be written by hand, is more understandable and
therefore easier to debug. Section 3.4.1 discusses the topic
more deeply. A module in text representation has the suffix
wat. There are tools that allow lossless conversion between
the two representations1. Table 1 shows a comparison of the
representation of a WebAssembly module in C++, binary,
and text (linear assembly bytecode).

The inventors have chosen to transfer WebAssembly mod-
ules usually in binary representation in order to speed up
the transfer by this compactness compared to text or native
code. But transmission in text representation is possible. Sec-
tion 4.2 deals with the extent of compactness of the code.
Furthermore, modules can be split into parts and thus can
be processed separately. In general, the efficiency of the pro-
cessing is to be improved by streamability. [14–16]

1Many short and useful examples can be found in the following repository:
https://github.com/mdn/webassembly-examples/

C++ Binary Text

int factorial(int n) {
if (n == 0)
return 1;

else
return n * factorial(n - 1);

}

20 00 get_local 0
42 00 i64.const 0

51 i64.eq
04 7e if i64
42 01 i64.const 1

05 else
20 00 get_local 0
20 00 get_local 0
42 01 i64.const 1

7d i64.sub
10 00 call 0

7e i64.mul
0b end

Table 1. Sample function, illustrated in C/C++, binary rep-
resentation and textual assembly representation. [15]

3.2 Memory
Each WebAssembly instance has a specially provided linear
standard memory, the so-called linear memory, which is ei-
ther imported or defined within the module in the memory
section. A linear memory is a contiguous, byte addressable
memory area and can be regarded as an untyped array of
bytes. TheWebAssembly page size is set to 64 KiB. The linear
memory is sandboxed and is shared with the embedder, for
example, a JavaScript instance WebAssembly modules share
a linear memory with JavaScript. Thus imports of JavaScript
are possible in WebAssembly and vice versa. [15]

3.3 Engine
The browsermanufacturers extended their existing JavaScript
engines to support WebAssembly. Google Chrome uses V8,
Mozilla Firefox uses SpiderMonkey, Apple’s Safari uses Java-
ScriptCore andMicrosoft Edge uses its JavaScript engineChakra.
As a result, the engines use different approaches, for exam-
ple for compilation or caching, in order to keep up with the
competition. For example, the compilers use the streaming
capability of the modules via HTTP to reduce compilation
time by compiling in parallel in multiple threads. This special
subdivision of code and function should above all enable par-
alization, for example during compilation, in order to make
the step easier. These differences are particularly noticeable
in the execution time. Important approaches of the engines
are described below:

Compiler Compiling is the core of an engine. This step
can be very noticeable in the execution time, as depicted in
Section 4.1. The engines follow different approaches when
starting the compilation. For example, Microsoft’s Chakra
takes a unique approach to compilation. It tries to optimize
the commissioning and the memory consumption at the first
execution by initially naive compiling. Mozilla’s SpiderMon-
key engine uses his Baseline JIT [12], designed for a quick

Lennard Golsch

Figure 1. General sequence of porting native code with Emscripten into a WebAssembly module and glue code. [3]

start and mainly handles validation. At the highest compi-
lation level, the JIT of JavaScript is then reused by all four
engines for the maximum peak performance of WebAssem-
bly. [16]

Validation Becausemodules come fromnon-secure sources,
they must first be validated to ensure safe execution. In gen-
eral, modules are validated on-the-fly, with only a few simple
rules as in JavaScript, for example, in order to maintain per-
formance. In principle, typing rules, which deal with contexts
and instructions for example, are used. [16]

Caching WebAssembly modules can be cached in conjunc-
tion with the JavaScript API. The compiled code can be
cached into the IndexedDB of the web browser. This means
that the same code may not have to be recompiled after sev-
eral attempts, but can be loaded from the cache. So far only
V8 and SpiderMonkey support the concept of caching. [16]

3.4 Deployment
One design goal was it to produce WebAssembly code eas-
ily. Meanwhile, WebAssembly is noticeably represented in
the Web. Statistics show that 1 out of 600 sites of the Alexa
Top 1 million websites run WebAssembly. [22] In this section
approaches for developing a WebAssembly module are de-
scribed as well as the integration into a platform like the
browser.

3.4.1 Development
There are many approaches to create WebAssembly modules.
Approaches exist for converting code from other languages
to WebAssembly, as well as manual approaches for devel-
opers to produce code themselves. Developers can convert
modules into a textual representation to better understand
the code. For this reason it is also possible to develop mod-
ules at assembly level in text representation, like in Figure 3.
This section describes common and efficient approaches [3]
for creating WebAssembly:

Transcompiling with Emscripten Already at the time
of asm.js the approach was pursued to convert code with
a transcompiler into a target language. "WebAssembly is
designed as a portable target for compilation of high-level
languages like C/C++/Rust, enabling deployment on the web
for client and server applications" [15]. Emscripten supports
the conversion of high-level languages with LLVM-front-end

to WebAssembly, like C/C++ or Rust. Currently, WebAssem-
bly does not include a native Garbage Collector (GC). For
this reason, only high-level languages are currently com-
patible with manual memory management. Nevertheless, a
GC in the form of a module can be added and thus dynamic
languages can be executed.
Figure 1 illustrates the concept behind the transcompila-

tion of native code in WebAssembly with Emscripten. Em-
scripten automatically converts native C/C++ code into a
module and glue code. The glue code embeds the module and
is indispensable for the execution of the module. For more
information see section 3.4.2. [3]

AssemblyScript AssemblyScript allows the development
of WebAssembly modules manually. It is a strict subset of
TypeScript. In a figurative sense, this approach can be used to
compile TypeScript in WebAssembly. However, there are lim-
itations so that TypeScript code cannot be compiled naively
without modifications inWebAssembly. TypeScript is usually
based on the features of JavaScript. AssemblyScript addresses
the features of WebAssembly. This is noticeable, for example,
in the typing or also in the avoidance of dynamic elements
such as JavaScript. [2]

3.4.2 Embedding
Basically WebAssembly modules cannot be executed inde-
pendently and are therefore dependent on a system that
instantiates the module. For the integration of WebAssembly
modules into web applications a JavaScript API is available.
Node.js is based on V8 and supports for example the integra-
tion of WebAssembly modules.

Because of the attractive features of WebAssembly, devel-
opers have also made efforts to use WebAssembly beyond
the browser. WebAssembly System Interface (WASI) provides
a system interface to run WebAssembly outside the web.
[10, 15] The following section deals with approaches for
embedding:

JavaScript API A motivation behind WebAssembly is fun-
damentally high-performance web applications. WebAssem-
bly cannot run stand-alone and depends on an embedder.
For this reason there is an approach to integrate WebAssem-
bly modules with JavaScript. WebAssembly Modules can be
managed in web applications using a JavaScript API. The
API provides functions with which it is possible to load or
compile WebAssembly modules.

WebAssembly: Basics

1 var importObj = {js: {

2 import1: () => console.log("hello,"),

3 import2: () => console.log("world!")

4 }};

5 fetch('demo.wasm').then(response =>

6 response.arrayBuffer()

7).then(buffer =>

8 WebAssembly.instantiate(buffer, importObj)

9).then(({module, instance}) =>

10 instance.exports.f()

11);

Figure 2. JavaScript glue code that initializes and executes
the module from Figure 3. [13]

Figure 2 describes the instantiation of a module which
is represented in Figure 3. First the module is fetched and
instantiated in line 8. During instantiation, both the module
and imports are passed. The functions from lines 2 and 3
are used. Then the function f from the module is called in
JavaScript in line 10. After execution, "hello, " and "world!"
are logged in the console.

1 (module

2 (import "js" "import1" (func $i1))

3 (import "js" "import2" (func $i2))

4 (func $main (call $i1))

5 (start $main)

6 (func (export "f") (call $i2))

7)

Figure 3. Sample code that imports and executes functions
through the glue code in Figure 2. [13]

WASI WASI is a system interface for the WebAssembly
platform. The main goal is to create another platform for
WebAssembly in addition to the browser. Worth mentioning
implementations areWasmtime [6] or Lucet [4]. [10]

4 Measurements
Main design goals of WebAssembly are a fast execution time
and also a compact presentation. Haas et al. [16] evaluated
WebAssembly 2017 with the introduction using PolyBenchC2

to confirm performance. For this asm.js and native code was
compared with WebAssembly. The following chapter deals
with measurement, which provides information about the
performance, but also about the compactness of the code.
2PolyBenchC is a benchmark suite of 30 numerical computations with static
control flow, extracted from operations in various application domains (lin-
ear algebra computations, image processing, physics simulation, dynamic
programming, statistics, etc.). [5]

More recent benchmarks and criticism can also be found in
section 5.

4.1 Performance
Figure 4 shows the results of the benchmark compared to
native code. For the measurement, the individual test cases
were converted from PolyBenchC toWebAssembly, executed
and compared with the execution time of native code. Poly-
benchC was chosen because the tests do not execute system
calls and are therefore compatible with the current architec-
ture. The individual modules were each executed with V8
and SpiderMonkey. Generally, there is not the best engine.
V8 performs best in some test cases, SpiderMonkey in oth-
ers. In the diagram the difference of the execution time is
marked with difference between VM’s. The X-axis shows the
individual PolyBenchC test cases and the Y axis shows the
execution time normalized to native code. The measurement
shows that WebAssembly can compete with native code in
execution. Overall, the results show that 7 benchmarks are
in the range of 10 % of native code. Almost all tests could be
performed with half speed.

Figure 4. Relative execution time of the PolyBenchC bench-
marks on WebAssembly normalized to native code. [16]

The execution time was also compared to asm. js. There-
fore, the PolyBenchC tests were converted to asm.js. Tests
show that WebAssembly is 34 % faster than asm.js.

4.2 Compactness
In addition to PolyBenchC, other test cases were also used to
make the compactness more meaningful. Figure 5 compares
the size betweenWebAssembly (generated from asm.js inside
V8), minified asm.js, and x86-64 native code. asm.js was com-
pared with code from Unity Benchmarks. Native code was
compared with tests from PolyBenchC and SciMark. The X
axis represents the size of native code (blue) and asm.js (yel-
low) in bytes compared to the size of WebAssembly on the Y
axis. Any point below the diagonal represents a function for
whichWebAssembly is smaller than the corresponding other
representation. On average, WebAssembly code is 62.5 % the

Lennard Golsch

size of asm.js (median 68.6 %) and 85.3 % of native x86-64
code size (median 78 %).

Figure 5. Binary size of WebAssembly in comparison to
asm.js and native code. [16]

5 Related Work
As already described in section 3 WebAssembly is based on
the approaches of (P)NaCl [25] and asm.js [17].

The WebAssembly masterminds Haas et al. [16] describe
the implementation of WebAssembly even more deeply in
their work and go into semantics in more detail.
However, Abhinav Jangda et al. [19] show in their work

from 2019 that meanwhile 13 tests can approach the speed
of native code and thus show that WebAssembly can achieve
much better performance related to PolyBench. Neverthe-
less, they question the benchmarks, because in their opinion
PolyCBenchmark is not meaningful enough for practical
applications because of the missing syscalls. For this rea-
son they have developed BROWSIX-WASM, an approach of
BROWSIX 3 extended by WebAssembly that allows unmodi-
fied WebAssembly-compiled Unix applications directly in-
side the browser to get meaningful benchmarks that treat
native code and web assembly. Benchmark Suite SPEC CPU
20174, that simulates real user applications, was used for the
evaluation. The result of their evaluation is that on average,
WebAssembly is 1.55× slower than native code in Chrome
and 1.45× slower than native in Firefox. They mainly make
the register accesses responsible for the poor performance.
Also, the jitted WebAssembly has about 1.75× more instruc-
tions than the native code. Compared to asm.js, WebAssem-
bly is 1.3× faster.
Musch et al. [22] discuss in their work the prevalence of

WebAssembly in the web and deal with malicious intentions.

3Browsix is a framework that closes the interface between operating systems
and the browser and allows unmodified programs that expect a Unix-like
environment to run directly in the browser. [23]
4The SPEC CPU 2017 benchmark package contains SPEC’s next-generation,
industry-standardized, CPU intensive suites for measuring and comparing
compute intensive performance, stressing a system’s processor, memory
subsystem and compiler. [11]

For this purpose they have analyzed the Alexa Top 1 Mil-
lion [1]. They have identified that up to 1 of 600 sites run
WebAssembly code. Related to this, they have detected that
over 50 % use WebAssembly for malicious intentions, such
as mining and obfuscation.

6 Conclusion
The relevant browser manufacturers have developed a joint
approach with WebAssembly that does justice to its goals.
WebAssembly combines the advantages of the older approaches
of the individual browser manufacturers and thus eliminates
the disadvantages. The ActiveX security problem has been
improved by the Sandbox. The missing platform indepen-
dence with PNaCl has been resolved. The worse performance
with asm.js via JavaScript was fixed by the new language.
It is to be seen as a result of the cooperation and therefore
refers to all common web browsers.

In summary, an approach was developed that can execute
code in a secure, platform-independent, operating system-
independent and language-independent environment with
high performance, thus scratching the performance level of
native code more and more. Evaluations show that the per-
formance has not yet reached the end. Compared to asm.js,
WebAssembly achieved results that are 1.3× faster. Com-
pared to native code, WebAssembly can’t shine yet, but is
constantly improving. It has to be considered that the project
is only four years old and still has a lot of potential. Statistics
show that WebAssembly is more and more used. Thus, the
web is now also prepared for demanding web applications.

References
[1] Anon. [n.d.]. Alexa. https://www.alexa.com. Accessed: 2019-11-28.
[2] Anon. [n.d.]. The AssemblyScript Book. https://docs.assemblyscript.

org. Accessed: 2019-11-07.
[3] Anon. [n.d.]. Concepts. https://developer.mozilla.org/en-US/docs/

WebAssembly/Concepts. Accessed: 2019-11-02.
[4] Anon. [n.d.]. Lucet, a native WebAssembly compiler and runtime.

https://github.com/fastly/lucet/wiki. Accessed: 2019-11-07.
[5] Anon. [n.d.]. polybench. https://sourceforge.net/p/polybench/wiki/

Home/. Accessed: 2019-11-05.
[6] Anon. [n.d.]. A small and efficient runtime for WebAssembly & WASI.

https://wasmtime.dev.
[7] Anon. [n.d.]. The State of the OCTOVERSE. https://octoverse.github.

com. Accessed: 2019-11-16.
[8] Anon. [n.d.]. Usage statistics of Flash as client-side programming

language on websites. https://w3techs.com/technologies/details/cp-
flash/all/all. Accessed: 2019-11-07.

[9] Anon. [n.d.]. Welcome to Native Client. https://developer.chrome.
com/native-client. Accessed: 2019-11-15.

[10] Lin Clark. 2019. Standardizing WASI: A system interface to run
WebAssembly outside the web. https://hacks.mozilla.org/2019/03/
standardizing-wasi-a-webassembly-system-interface/, note = Ac-
cessed: 2019-11-07.

[11] Standard Performance Evaluation Corporation. [n.d.]. SPEC CPU 2017.
https://www.spec.org/cpu2017/. Accessed: 2019-11-15.

[12] Jan de Mooij. [n.d.]. The Baseline Interpreter: a faster JS interpreter in
Firefox 70. https://hacks.mozilla.org/2019/08/the-baseline-interpreter-
a-faster-js-interpreter-in-firefox-70/. Accessed: 2019-11-27.

WebAssembly: Basics

[13] Daniel Ehrenberg. 2019. WebAssembly JavaScript Interface. https:
//www.w3.org/TR/wasm-js-api-1/. Accessed: 2019-11-07.

[14] W3C WebAssembly Community Group. [n.d.]. Introduction. https:
//webassembly.github.io/spec/core/intro/introduction.html. Accessed:
2019-11-01.

[15] W3C WebAssembly Community Group. [n.d.]. WebAssembly. https:
//webassembly.org. Accessed: 2019-10-31.

[16] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the Web Up to Speed with WebAssembly. SIG-
PLAN Not. 52, 6 (June 2017), 185–200. https://doi.org/10.1145/3140587.
3062363

[17] David Herman, Luke Wagner, and Alon Zakai. 2014. asm.js Working
Draft. http://asmjs.org/spec/latest/. Accessed: 2019-10-31.

[18] Martin Holland. [n.d.]. Adobe verabschiedet sich von Flash:
2020 ist Schluss. https://www.heise.de/newsticker/meldung/Adobe-
verabschiedet-sich-von-Flash-2020-ist-Schluss-3783264.html. Ac-
cessed: 2019-11-07.

[19] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha.
2019. Not So Fast: Analyzing the Performance of WebAssembly vs.
Native Code. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 107–120. https://www.
usenix.org/conference/atc19/presentation/jangda

[20] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). IEEE Computer
Society, Washington, DC, USA, 75–. http://dl.acm.org/citation.cfm?
id=977395.977673

[21] Microsoft. 1996. Microsoft Announces ActiveX Technologies.
https://news.microsoft.com/1996/03/12/microsoft-announces-
activex-technologies/. Accessed: 2019-10-31.

[22] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad
Rieck. 2019. New Kid on the Web: A Study on the Prevalence of We-
bAssembly in the Wild. 23–42. https://doi.org/10.1007/978-3-030-
22038-9_2

[23] Bobby Powers, John Vilk, and Emery D. Berger. 2017. Browsix: Bridg-
ing the Gap Between Unix and the Browser. SIGOPS Oper. Syst. Rev.
51, 2 (April 2017), 253–266. https://doi.org/10.1145/3093315.3037727

[24] Konrad Rieck, Tammo Krueger, and Andreas Dewald. 2010. Cujo:
Efficient Detection and Prevention of Drive-by-download Attacks.
In Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC ’10). ACM, New York, NY, USA, 31–39. https:
//doi.org/10.1145/1920261.1920267

[25] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas
Fullagar. 2009. Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In IN PROCEEDINGS OF THE 2007 IEEE SYMPOSIUM ON
SECURITY AND PRIVACY.

